结合自注意力的BiLSTM-CRF的电子病历命名实体识别
关键词:电子病历;命名实体识别;自注意力;BiLSTM-CRF
摘 要:为弥补现有方法不能很好捕获电子病历实体之间的长距离依赖关系的缺陷,提出一种结合自注意力的BiLSTM-CRF的命名实体识别方法。将输入文本转成神经网络可识别的数值形式;经过BiLSTM网络并结合自注意力计算得到每个字的输出特征向量;通过CRF层找到句子最适合的输出标签序列,从而确定命名实体。采用CCKS2018数据集进行实验,结果表明,改进的命名实体识别方法对电子病历具有一定的适应性,且与现有的方法相比,测试集的准确率提高了6.50~9.25个百分点。
内 容:原文可通过湖北省科技信息共享服务平台(http://hbstl.hbstd.gov.cn/webs/homepage.jsp)获取