欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于MIC的支持向量回归及其在化工过程中的应用
作者:顾俊发;许明阳;马方圆;林治宇;纪成;王璟德;孙巍; 加工时间:2020-12-10 信息来源:化工学报
关键词:算法;预测;过程系统;数据校正;最大信息系数;变量筛选
摘 要:在化工生产中,软测量方法可以有效解决某些关键变量由于仪表故障而无法实时获取数据的问题。在建立软测量模型时,变量及回归方法的选取会直接影响模型的准确率。特别是在现代化工中,过程变量众多且变量间存在着冗余且复杂的非线性关系。对此,本文提出了一种基于最大信息系数的支持向量回归算法,利用最大信息系数在非线性相关性度量的优势,选择合适的辅助变量,避免了全部变量作为输入所造成的数据冗余。在此基础上,利用支持向量回归方法建立软测量模型,实现对软测量目标的预测。该方法被应用于存在仪表故障的某催化重整装置进料换热器热端压降的软测量中,结果表明该方法可以有效地实现对压降的软测量,实现了对仪表故障时的数据校正。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服