欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

一种基于改进高斯过程隐变量模型的多角度人脸识别算法
作者:刘剑;龚志恒;吴成东;高恩阳; 作者单位:东北大学信息科学与工程学院;沈阳建筑大学信息与控制工程学院; 加工时间:2013-12-20 信息来源:电子与信息学报
关键词:人脸识别;;高斯过程;;谱算法;;隐变量模型;;共有信息;;独有信息
摘 要:针对传统谱算法在人脸识别中的局限,该文提出一种基于改进高斯过程隐变量模型(GP-LVM)的多角度人脸识别算法。首先,通过高斯过程(GP)对人脸流形建立概率模型,得到高斯过程隐变量模型(GP-LVM);其次,分析GP-LVM得到共有信息(shared information)和独有信息(private information),利用概率最大化与拉格朗日乘子法得到参照矩阵和参照值;最后,实现多角度人脸识别。选取Yale,JAFFE,FERET,CMU-PIE 4类数据集进行对比实验,实验结果表明:该文提出的算法可以有效地识别多角度人脸,针对无角度人脸识别也具有良好的效果。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服