欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于GPU的随机森林算法优化

Optimizing Random Forests on GPU

作者:Derrick Cheng; John F. Canny 作者单位:EECS Department, University of California, Berkeley 加工时间:2015-03-23 信息来源:EECS 索取原文[11 页]
关键词:GPU;随机森林;BIDMachRF;算法优化
摘 要:We have designed BIDMachRF – an implementation of Random Forest with high CPU and GPU throughput and with full scalability. This paper describes the current state of our implementation as well as points for improvement, which we have identified through benchmarks on classical datasets. Our current in progress version has already shown to be 5x faster than implementations such as SciKit-Learn on large sized GBs of data and is estimated to be at least 20x faster than those implementations when complete.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服