关键词:电动汽车;充电需求;图卷积网络;长短期记忆网络;时空预测
摘 要:为提高电动汽车充电需求预测的准确性,减少热点区域交通压力,提出一种融合图卷积网络(GCN)与长短期记忆网络(LSTM)的时空图卷积网络模型(GCN+LSTM)。该模型将充电站作为图的节点,并通过地理位置的接近程度定义节点间的连接。通过GCN迭代聚合相邻节点信息,模型能捕捉充电站之间的空间关联。同时,LSTM对充电需求的时间序列特征进行分析,利用历史数据预测未来的充电趋势。通过构建充电站间的栅格地图,模型实现了高效的数据处理和特征提取。实验结果表明,与其他传统网络模型相比,GCN+LSTM模型在7 d、30 d预测任务中,整体上均展现出更低的平均绝对误差(MAE)、均方根误差(RMSE)以及平均绝对百分比误差(MAPE),显示出更优的预测性能。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取