欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

两种离散过程神经网络算法及在图像恢复中的应用
作者:肖红;李盼池; 作者单位:东北石油大学计算机与信息技术学院; 加工时间:2013-12-20 信息来源:信号处理
关键词:离散过程神经网络;;数值积分;;三次样条积分;;抛物插值积分;;图像恢复
摘 要:为解决离散过程神经网络的训练问题,提出了两种基于数值积分的离散过程神经网络训练算法.分别采用三次样条积分和抛物插值积分直接处理隐层离散样本和权值的时域聚合运算,输出层采用普通神经元,采用L-M(Levenberg-Marquard)算法实现网络参数的调整.以模糊图像的恢复为例,实验结果表明,两种训练方法的性能比较接近,但都优于基于沃尔什变换的离散过程神经网络和基于样条差值函数的离散过程神经网络,从而揭示出数值积分方法在提升离散过程神经网络性能和应用方面具有一定潜力。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服