欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

下一代的MOSFETs的应变解决方案的有效性

Effectiveness of Strain Solutions for Next-Generation MOSFETs

作者:Nuo Xu 作者单位:University of California at Berkeley 加工时间:2013-11-20 信息来源:EECS 索取原文[104 页]
关键词:晶体管;CMOS;诱导性能;场效电晶体
摘 要:The conventional planar bulk MOSFET is difficult to scale down to sub-20nm gate length, due to the worsening performance variability and short channel effects. Thin body transistors, including Multiple-Gate (FinFET & Tri-Gate FET) and Fully Depleted SOI (FD-SOI) MOSFETs are anticipated to replace the current transistor architecture, and will be used in future CMOS technology nodes. Strained Silicon technology is widely used today to boost planar bulk transistor performance. Thus it's technically important to examine the strain-induced performance enhancement in these thin body transistors, for nanometer scale channel length. A comprehensive study on impact of channel stress on ultra-thin-body FD-SOI MOSFETs is presented. It's found that strain-induced mobility enhancement diminishes with Silicon body thickness scaling below 5nm for electrons, but not for holes. Strain-induced carrier transport enhancement is maintained with gate-length scaling. By applying forward back biasing (FBB) through the ultra-thin Buried Oxide layer, both carrier mobilities and their responses to strain get enhanced. For Multiple-gate FETs, the impact of performance enhancement through various types of stressors (including CESL, SiGe Source/Drain, Strained SOI and Metal Gate Last process) is studied, for different fin crystalline orientations and aspect ratios, to provide guidance for 3-D transistor design optimization.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服