关键词:机械密封;深度学习模型;声发射信号;SK卷积层;全局平均池化层;批归一化层;VGG19-SK模型
摘 要:机械密封在机械设备的的启停过程中,时常会发生失效。针对这一问题,提出了一种新的深度学习模型VGG19-SK,并将其应用于机械密封的启停状态识别。首先,在机械密封启停过程中,利用密封声发射信号试验台获取了试验数据,这些数据为训练深度学习模型提供了基础;然后,在传统VGG19基础之上进行了改进,增加了SK卷积层、全局平均池化层和批归一化(BN)层,这些改进显著减少了模型的参数数量,降低了对硬件设备的要求,同时提升了模型的性能;最后,在模型训练过程中,对VGG19-SK模型进行了细致的调优,采用准确率曲线、损失值曲线以及混淆矩阵等指标,与其他模型进行了对比,验证了VGG19-SK模型的有效性,突出了VGG19-SK模型的优越性。研究结果表明:在机械密封启停阶段8种分类识别中,VGG19-SK取得了86.67%的准确率,比传统VGG19提升了约2.19%;同时,模型的训练参数减少了83.74%,模型总体大小缩减了约80%。该VGG19-SK机械密封状态识别模型在兼顾准确率的同时保证了在硬件资源受限状况下的运行能力,为进一步开发基于深度神经网络模型的机械密封状态故障诊断系统奠定了基础。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取