欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于LSTM神经网络深度序列机械钻速实时预测
作者:冯义; 朱亮; 杨立军; 李慎越; 席俊卿; 陈芳; 纪慧 加工时间:2024-05-28 信息来源:西安石油大学学报(自然科学版)
关键词:机械钻速;LSTM神经网络;深度序列;实时预测;人工智能;深度学习
摘 要:机械钻速是钻井优化、缩短钻井周期的关键因素,传统的机械钻速预测大多是在钻井后进行钻井分析,预测效率和精度低、地层适用性不广。为了以更高效的方法预测得到高精度机械钻速,提出基于长短期记忆(LSTM)神经网络的深度序列机械钻速预测方法。采集实时钻井数据集,使用皮尔逊相关系数衡量各特征之间的相关性,筛选出井深、伽玛射线、地层密度、孔隙压力、井径、钻时、排量、钻井液密度等8个参数。构建LSTM神经网络模型,训练LSTM模型并预测ROP,对预测结果进行分析,并用决定系数(R2)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)等指标对LSTM模型、BP模型和SVM模型性能进行对比分析。结果表明:LSTM模型其R2、RMSE和MAPE的值分别为0.948、1.151和17.075,相较于BP模型和SVM模型,其R2更大,RMSE和MAPE较小,说明LSTM模型预测性能更好。该方法有助于钻井工程师和决策者提前获得钻井信息,从而更好地规划钻井作业,缩短钻井周期,同时为钻井参数预测提供新的途径,能改善以往预测方法在处理复杂地层问题时效率不高、预测精度低等问题。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服