欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于张量奇异谱分解的机械故障特征提取方法研究
作者:李晓明;吕勇;易灿灿;黄震西; 加工时间:2017-06-14 信息来源:机械设计与制造
关键词:张量分解;标准分解;奇异谱;故障诊断;特征提取
摘 要:提出了将张量奇异谱分解运用于机械故障诊断特征提取,张量奇异谱分解(TSSA)是传统奇异谱分解(SVD)的扩展。由于传统奇异谱分解在处理非平稳、非线性的信号效果不理想,故障特征不明显。因此将传统的奇异谱分解延伸到三阶张量分解中,从而将一维的时间序列转换成为三阶的张量,然后运用标准(PARAFAC)张量分解,标准(PARAFAC)张量分解是把秩为R的张量分解为R个秩-1的张量的和,分解出原始张量的因子矩阵和权重,并重构回一维信号进而对信号的时域和频域做出分析。为了证明方法的有效性,将该方法应用于轴承故障信号的特征提取中,分别运用了仿真和实测信号做了分析,结果表明该方法不仅能有效地抑制噪声,明显地提取轴承故障信号特征,而且其效果要优于传统的奇异谱分解方法,具有一定的工程实践价值。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服