多尺度加权CEEMD-1DCNN旋转机械故障诊断
关键词:旋转机械;故障诊断;互补集合经验模态分解;一维卷积神经网络
摘 要:旋转机械振动信号具有较强的非线性、非平稳性的特点,互补集合经验模态分解(CEEMD)克服了传统EEMD的缺陷,提供了对信号从粗到精不同尺度的刻画。针对不同尺度对故障特性描述的差异,提出一种基于多尺度加权CEEMD的一维卷积神经网络(1DCNN)故障诊断方法。利用互补集合经验模态将振动信号分解成一系列本征模态函数(IMFs),然后求取各个IMF分量的峭度值,计算各分量峭度所占权重,根据各个分量权重值对信号进行重构。将数据样本划分为训练集、验证集和测试集,将训练集输入到一维卷积神经网络中学习更新网络参数,然后用验证集进行验证得到最优诊断模型,最后利用测试集对诊断模型进行测试。通过电机轴承数据集和齿轮箱数据集两组实验进行了模型验证,诊断精度分别为99.98%和99.73%,表明所提方法能够快速准确地诊断出不同故障类型,并且具有较高的故障诊断准确率和鲁棒性。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取