关键词:故障诊断;深度学习;多尺度学习;注意力机制;融合模型
摘 要:针对目前化工过程故障诊断中降噪效果不佳、多尺度特征未区分重要性、时序特征提取不充分等问题,本文提出了一种基于多尺度融合模型的化工故障诊断方法,该方法将注意力机制分别与软阈值方法和多尺度学习相结合,构建了多尺度深度残差收缩网络,并将提取到的多尺度空间特征送入双向门控循环单元进一步提取时序特征,相比于单通道网络,双向门控循环单元不仅能够完成对过去信息的学习,而且还能够完成对未来信息的学习,因此能够得到更多的时间关联信息。最后使用修正田纳西-伊斯曼过程数据进行验证,最终取得了95.08%的分类精度和94.76%的召回率,明显优于对比方法,证明了方法的有效性。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取