欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

同步、通信和并行线性代数计算之间的权衡

Tradeoffs between synchronization, communication, and work in parallel linear algebra computations

作者:Edgar Solomonik;Erin Carson;Nicholas Knight;James Demmel 作者单位:EECS Department, University of California, Berkeley 加工时间:2015-06-07 信息来源:EECS 索取原文[18 页]
关键词:并行算法;同步;通信;数据移动
摘 要:This paper derives tradeoffs between three basic costs of a parallel algorithm: synchronization, data movement, and computational cost. Our theoretical model counts the amount of work and data movement as a maximum of any execution path during the parallel computation. By considering this metric, rather than the total communication volume over the whole machine, we obtain new insight into the characteristics of parallel schedules for algorithms with non-trivial dependency structures. The tradeoffs we derive are lower bounds on the execution time of the algorithm which are independent of the number of processors, but dependent on the problem size. Therefore, these tradeoffs provide lower bounds on the parallel execution time of any algorithm computed by a system composed of any number of homogeneous components each with associated computational, communication, and synchronization payloads. We first state our results for general graphs, based on expansion parameters, then we apply the theorem to a number of specific algorithms in numerical linear algebra, namely triangular substitution, Gaussian elimination, and Krylov subspace methods. Our lower bound for LU factorization demonstrates the optimality of Tiskin’s LU algorithm [24] answering an open question posed in his paper, as well as of the 2.5D LU algorithm which has analogous costs. We treat the computations in a general manner by noting that the computations share a similar dependency hypergraph structure and analyzing the communication requirements of lattice hypergraph structures.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服