欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

特征的支持度与其分类能力的关系研究
作者:尹建芹;田国会;魏军;李金屏;林佳本 作者单位:济南大学信息科学与工程学院山东省网络环境智能计算技术重点实验室;中国科学院太阳活动重点实验室;山东大学控制科学与工程学院 加工时间:2015-04-01 信息来源:电子学报 索取原文[7 页]
关键词:频繁模式;分类;特征选择;信息增益
摘 要:频繁模式挖掘在分类问题中得到了广泛的应用,大量的工作利用频繁模式挖掘对分类问题进行特征选择,但对于为什么频繁模式挖掘可以在分类问题中进行有效的特征选择则缺乏系统的研究.为了为频繁模式挖掘在分类问题中的特征选择应用提供理论基础,需要确立特征的支持度与特征分类能力之间的关系,本文以特征的信息增益作为分类能力的评价准则,讨论其与特征支持度之间的联系.首先证明了信息增益是特征支持度的上凸函数;然后,在二类问题和多类问题情况下,分别证明了具有低支持度或高支持度的特征具有有限的信息增益,即具有低支持度或高支持度的特征具有有限的分类能力.最后,通过仿真实验验证了支持度与信息增益之间的关系,为频繁模式挖掘在分类问题中的应用提供了理论基础.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服