欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于大数据深度迁移模型的机械故障诊断
作者:曾德贵;赵建明; 加工时间:2020-09-20 信息来源:组合机床与自动化加工技术
关键词:机械大数据;故障诊断;深度学习;迁移学习;G-Mean指标
摘 要:针对现有机械故障诊断方法在小样本条件下检测率低的不足,提出一种基于深度迁移学习模型的机械大数据故障诊断方法研究。构建深度学习模型,计算模型的稀疏特性和分类错误率指标,并基于此提取机械大数据的故障特征类型;针对实际检测中有效样本较少的不足,利用迁移学习方法将实验数据用于辅助机械故障特征大数据的训练与测试,不断地调整输出结果并提高对故障点的定位与诊断精度。实验结果表明,提出诊断方法的G-Mean指标优于现有方法,在故障比为1:1000的条件下,故障查准率仍可达到96.34%。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服