关键词:语音转换;;稀疏卷积非负矩阵分解;;过完备时频基
摘 要:为了在语音转换过程中充分提取语音的个人特征信息,同时考虑到语音的稀疏性,文章提出了一种基于稀疏卷积非负矩阵分解的语音转换方法。卷积非负矩阵分解得到的时频基可以承载语音信号中的个人特征信息及语音帧之间的相关性,而稀疏卷积非负矩阵分解得到的过完备时频基更能体现语音的细节,可以较好地保存语音中的个人特征信息。利用这一特点,通过稀疏卷积非负矩阵分解从训练数据中提取源说话人和目标说话人相匹配的过完备时频基,然后通过时频基的替换实现语音转换。相对于传统方法,该方法能够更好地保存语音个人特征信息和语音帧间相关性,从而可以进一步提高转换语音的质量和相似度。实验仿真及主、客观评价结果表明,与基于高斯混合模型、卷...
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取