欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于注意力增强型编解码网络的化工过程故障诊断
作者:夏起磊; 罗林; 张垚 加工时间:2024-07-26 信息来源:辽宁石油化工大学学报
关键词:故障诊断;长短期记忆网络;注意力机制;归一化指数回归;编解码网络
摘 要:化工过程的数据往往含有动态时序特性,传统故障检测对动态信息的使用率较低,限制了故障诊断性能。针对这个问题,提出了一种基于注意力增强的编解码网络模型的化工过程故障诊断新方法。编码部分利用LSTM提取过程数据的特征信息,结合注意力机制,更加有效地利用过程数据间的动态信息;解码部分利用LSTM并结合注意力机制提供的上下文向量,为归一化指数的回归提供更加精准的状态信息,最后利用归一化指数回归得到各个样本数据的故障类别概率值。结果表明,注意力机制的引入,提高了模型在时域下对过程动态信息的使用效率。针对本文提出的方法,利用田纳西伊士曼过程数据进行了实验,并与标准的PCA-SVM、DBN和ResNet的结果进行了对比。结果表明,该方法诊断故障的效果更加理想。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服