关键词:非平稳信号;经验模态分解;变分模态分解;自适应经验傅里叶分解;故障诊断
摘 要:为了克服傅里叶变换、经验模态分解与傅里叶分解方法在分析非平稳信号方面的不足,提出一种适合非线性和非平稳信号分析的新方法——自适应经验傅里叶分解(Adaptive empirical Fourier decomposition,AEFD)。AEFD方法以快速傅里叶变换为基础,通过对变换系数进行分组重构,能够将一个非平稳信号自适应地分解为若干个瞬时频率具有物理意义的傅里叶本征模态函数(Fourier intrinsic mode function,FIMF)之和。研究了AEFD的分解正交性和精确性,通过仿真信号分析,将其与经验模态分解,变分模态分解和傅里叶分解方法等进行了详细对比,结果表明了AEFD的优越性。最后,为了提高故障诊断的精度和验证AEFD的有效性,将AEFD应用到转子碰摩和滚动轴承局部故障诊断中。试验数据分析结果表明,与经验模态分解等方法相比,AEFD不仅能够有效地诊断故障,而且诊断精度更高。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取