欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于流形学习与神经网络的旋转机械故障诊断
作者:许子非;岳敏楠;李春; 加工时间:2020-11-21 信息来源:热能动力工程
关键词:状态分类;变分模态分解;降维;随机近邻嵌入理论;故障诊断
摘 要:为解决风力机早期轴承故障信号微弱,其非线性及特征量缺失导致故障诊断的困难,基于能量截止法,考虑参数互交性,采用鲸鱼算法获取最优参数组合,提出优化改进变分模态分解方法(WOA-IVMD)将轴承振动信号分解至不同频段;又考虑信号非线性,通过9种非线性特征参数,基于经WOA-IVMD分解分量构建非线性"复合高维"特征矩阵,为避免高维数据导致维数灾难问题,采用随机近邻嵌入理论(t-SNE)对高维特征矩阵进行降维处理,并以降维所获数据作为测试样本,通过神经网络完成轴承工作状态分类。结果表明:WOA-IVMD分解信号具有与原分量更高的相似度;采用t-SNE对非线性"复合高维"矩阵进行降维,其三维流形表现具有突出的分类效果;以降维数据为测试样本,采用神经网络进行学习建模并分类,其结果具有较高的吻合度,表明提出方法可准确进行轴承状态分类。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服