基于改进Kalman滤波算法的多模型融合建模方法
关键词:改进Kalman滤波;模型融合;混合建模;主元分析;预测;聚合
摘 要:针对聚合物生产过程重要质量控制指标或状态变量的软测量问题,提出了一种基于改进Kalman滤波算法的多模型融合建模方法。将混合核函数主元分析(K2PCA)与人工神经网络(ANN)相结合,建立一种基于K2PCA-ANN的数据驱动模型;利用改进Kalman滤波算法实现K2PCA-ANN模型与机理模型融合,构建一种并联结构的混合模型;协调二次滤波(线性滑动平滑)和方差更新对混合模型进行优化处理,使混合模型的估计性能尽可能地达到最优,使混合模型的预测稳定性得到有效改善。将该多模型融合建模方法应用于氯乙烯聚合过程聚合速率软测量中,应用研究结果表明:与单一的机理模型或K2PCA-ANN数据驱动模型的预测性能...
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取