欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

高维多目标优化中基于稀疏特征选择的目标降维方法
作者:陈小红;李霞;王娜 作者单位:深圳大学信息工程学院;深圳市现代通信与信息处理重点实验室 加工时间:2015-09-25 信息来源:电子学报 索取原文[8 页]
关键词:高维多目标优化;目标降维;稀疏特征选择
摘 要:目标降维算法通过去除冗余的目标达到简化问题规模的目的,为求解高维多目标优化问题提供了一种新的思路和方法.近似解集的几何结构特征和Pareto占优关系从不同侧面反映了多目标优化问题的内在结构特性,而现有算法仅利用其中一种特征分析目标之间的关系,具有较大局限性.本文提出基于稀疏特征选择的目标降维方法,该方法利用近似解集的几何结构特征构建稀疏回归模型,求解高维目标空间映射为低维目标子空间的稀疏投影矩阵,依据此矩阵度量目标的重要性,并利用Pareto占优关系改变程度选择满足误差阈值的目标子集,实现目标降维.通过与其他已有目标降维算法比较,实验结果表明本文提出的降维算法具有较高的准确性,并且受近似解集质量的影响较小.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服