欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

LDA_SVM方法在化工过程故障诊断中的应用
作者:冀丰偲;余云松;张早校; 加工时间:2020-06-23 信息来源:高校化学工程学报
关键词:线性判别分析;支持向量机;田纳西-伊斯曼;故障诊断
摘 要:针对复杂化工生产过程数据多样性、高维性以及风险重复性的特点,结合网格搜索(GS)与K折交叉验证(K-CV)理论,提出一种基于线性判别分析(LDA)与支持向量机(SVM)相融合的故障诊断方法。首先利用LDA对正常工况和5类故障模式的混合运行数据进行矢量映射,压缩特征空间维度,抽取并重构故障特征信息。将预处理后的数据作为输入样本,利用GS与K-CV得到最佳SVM分类器,实现故障诊断。仿真结果表明,相对于单一SVM和PCA(主元分析)_SVM故障诊断模型,LDA与SVM融合故障诊断方法收敛速度快、诊断准确率高、模型健壮,对化工过程6种运行模式的故障识别准确率达到93.9%。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服