关键词:轴承故障;检测;随机森林算法;滤波;分类标识
摘 要:针对传统机器学习算法受输入变量限制、且易出现过学习或欠学习,提出不受输入变量限制且存在大量数据缺失时有很好保持精确性的随机森林算法对汽车轴承故障进行检测。对采集到样本数据进行滤波处理,抑制信号中噪声;利用随机森林算法对采集到的时域信号进行分类标识,确定包含故障信息的信号序列;再将信号转换到频域,利用随机森林算法对频域内信号进行检测,确定出故障频率;最后采集试验数据对所提及算法进行验证,结果表明:相比于传统的机器学习算法,随机森林算法响应速度快,且准确率高。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取