欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

弗吉尼亚从藻类生物柴油中开发新的替代能源

Developing New Alternative Energy in Virginia Bio-Diesel from Algae
作者:Hatcher, P. 作者单位:Old Dominion Univ., Norfolk, VA.;Department of Energy, Washington, DC. 加工时间:2014-11-19 信息来源:科技报告(DE) 索取原文[115 页]
关键词:藻类;替代燃料;农药;生物量;化学加工;柴油燃料;酯类;提取;化肥;甘油;实施;石化;弗吉尼亚州;生物柴油
摘 要:The overall objective of this study was to select chemical processing equipment, install and operate that equipment to directly convert algae to biodiesel via a reaction patented by Old Dominion University (Pat. No. US 8,080,679B2). This reaction is a high temperature (250-330 degrees C) methylation reaction utilizing tetramethylammonium hydroxide (TMAH) to produce biodiesel. As originally envisioned, algal biomass could be treated with TMAH in methanol without the need to separately extract triacylglycerides (TAG). The reactor temperature allows volatilization and condensation of the methyl esters whereas the spent algae solids can be utilized as a high-value fertilizer because they are minimally charred. During the course of this work and immediately prior to commencing, we discovered that glycerol, a major by-product of the conventional transesterification reaction for biofuels, is not formed but rather three methoxylated glycerol derivatives are produced. These derivatives are high-value specialty green chemicals that strongly upgrade the economics of the process, rendering this approach as one that now values the biofuel only as a by-product, the main value products being the methoxylated glycerols. A horizontal agitated thin-film evaporator (one square foot heat transfer area) proved effective as the primary reactor facilitating the reaction and vaporization of the products, and subsequent discharge of the spent algae solids that are suitable for supplementing petrochemical-based fertilizers for agriculture. Because of the size chosen for the reactor, we encountered problems with delivery of the algal feed to the reaction zone, but envision that this problem could easily disappear upon scale-up or can be replaced economically by incorporating an extraction process. The objective for production of biodiesel from algae in quantities that could be tested could not be met, but we implemented use of soybean oil as a surrogate TAG feed to overcome this limitation.
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服