欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于SILPDA的旋转机械故障诊断方法
作者:董晓鑫; 赵荣珍 加工时间:2023-01-15 信息来源:振动与冲击
关键词:故障诊断;降维;内蕴结构;多流形
摘 要:针对故障特征集因“维数灾难”导致的故障分类困难现状,提出了一种基于强化内蕴局部保持判别分析(strengthened intrinsic local preserving discriminant analysis, SILPDA)的故障特征集降维算法。该算法将强化的多流形内蕴模型与局部相似度矩阵融入目标函数的构建中,期间充分考虑了数据集的多流形结构特征并且保留了样本的局部结构信息,使降维后的低维特征子集易于实施分类运算,继而实现提高故障辨识精度的效果。利用转子试验台振动信号集合构建的原始故障特征集对算法性能进行了验证。结果表明,该算法能够从原始故障数据集中提取出利于实施分类运算的敏感特征子集,这些特征子集将会使不同故障类别之间的边界变得更加清晰,最终相较于局部保持投影(locality preserving projections, LPP)、线性判别分析(linear discriminant analysis, LDA)、局部边缘判别投影(locality margin discriminant projection, LMDP)等算法可实现更好的故障辨识效果。对于提高旋转机械大数据资源的价值密度,该算法提供了一种优化数据结构模型的理论依据。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服