关键词:单站无源定位跟踪;;滤波算法;;容积原则;;后向平滑;;容积卡尔曼滤波
摘 要:单站无源定位跟踪是一个典型的非线性滤波问题,由于测量精度不高、初始误差较大等原因容易导致滤波算法定位精度低、收敛速度慢。本文将一种新型的滤波算法——容积卡尔曼滤波(cubature Kalman filter,CKF)应用于单站无源定位领域,并将后向平滑思想与CKF算法相结合,提出了一种后向平滑容积卡尔曼滤波算法(backward-smoothing CKF,BSCKF)。该算法使用容积数值积分原则直接计算非线性随机函数的均值和方差,并采用后向平滑值进行递归滤波,具有更优的非线性估计性能。仿真实验表明,与EKF、UKF和CKF算法相比,BSCKF算法的定位精度更高、收敛速度更快。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取