关键词:集合经验模态分解(EEMD);;多维特征向量;;旋转机械;;奇异值分解;;能量比特征;;故障诊断
摘 要:为有效诊断旋转机械故障,提出基于集合经验模态分解(EEMD)的多维特征提取故障诊断识别方法。利用EEMD将原始振动信号分解为若干个本征模态函数(IMF),分别计算原始信号和IMF分量的时域指标;将时域指标进行奇异值分解,得到奇异值特征向量,计算原始信号频率带能量比和IMF分量能量比;将IMF分量能量比、奇异值特征向量、频率带能量比组合为故障特征向量,作为神经网络的输入,对转子的工作状态进行诊断识别。结果表明:多维特征向量的识别效果优于EEMD能量特征,能更充分反映出转子的故障特征。
内 容:原文可通过湖北省科技信息共享服务平台(http://hbstl.hbstd.gov.cn/webs/homepage.jsp)获取