欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

一种机械臂电机故障时频尺度诊断方法——基于深度学习和激光多普勒测振技术
作者:陈永强; 杨亚 加工时间:2024-06-20 信息来源:西昌学院学报(自然科学版)
关键词:深度学习网络;激光多普勒测振技术;机械臂;电机故障
摘 要:机械臂电机振动信号的采集效果较差,影响时频特性分析过程,导致故障诊断效果与精度较差,为此提出基于深度学习和激光多普勒测振技术的机械臂电机故障时频尺度诊断方法。使用激光多普勒测振技术与小波阈值去噪算法,建立机械臂电机振动信号采集系统,获取并重构故障信号;提取电机振动信号的时域、频域等尺度特征,引入人工神经网络建立一个具备学习能力的故障诊断模型,将提取的机械臂电机故障时域、频域等尺度特征输入诊断模型中,输出分类诊断结果,即可完成机械臂电机故障时频尺度诊断。结果表明:利用该方法开展电机故障诊断时,检测结果与实际电机故障类型之间偏差较小,诊断效果好、精度高。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服