欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于时序马尔科夫模型的电子警察采集数据异常识别
作者:韦学武;朱海峰;刘彦斌;温熙华;龚方徽; 加工时间:2020-05-21 信息来源:公路与汽运
关键词:智能交通;电子警察;数据异常;流量预测;马尔科夫模型;期望最大化(EM)算法
摘 要:针对电子警察采集数据存在的数据延迟、数据缺失和异常偏离三类常见问题,在保证数据未出现延迟和缺失时,基于马尔科夫模型判断数据的异常偏离;考虑流量序列间的关联关系,建立基于历史数据的转移概率矩阵,在此基础上利用马尔科夫模型进行流量概率分布预测,进而利用EM算法拟合概率分布得到对应的均值和标准差;根据模型预测结果和设定的流量合理分布阈值,以置信区间的形式直接判断流量的异常偏离情况。实例验证结果表明,基于马尔科夫模型的流量预测准确率达87%,异常偏离识别准确率为83%左右。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服