欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于YOLOv4算法在车辆检测中的应用
作者:王婷婷; 戴金龙; 孙振轩; 陈建玲; 孙勤江 加工时间:2023-04-27 信息来源:吉林大学学报(信息科学版)
关键词:电子信息;小目标检测;遮挡检测;YOLOv4算法;注意力机制
摘 要:为解决车辆识别中由于拍摄角度和距离的不同,导致成像后的车辆尺寸较小和车辆存在不同程度的遮挡,从而产生车辆的错检和漏检等问题,在单阶段目标检测网络YOLOv4(You Only Look Once version 4)算法的基础上,提出了基于注意力机制的递归YOLOv4目标检测算法,即RC-YOLOv4(Recursive and CBAM You Only Look Once version 4)算法。为提高算法对成像后小尺寸车辆的检测能力,在YOLOv4算法加入CBAM(Convolutional Block Attention Module)模块,该模块结合了通道和空间注意力机制,能帮助网络模型更加关注检测图像中的重点信息和小目标信息。针对车辆部分遮挡的检测问题,采用递归特征金字塔(RFP:Recursive Feature Pyramid)结构加强模型对深层特征信息提取能力,RFP结构类似于选择性增强或抑制神经元激活的人类视觉感知,将主干网络提取到的特征递归融合,然后反馈给主干网络,多次特征融合增强网络对上下文语义信息的提取整合能力。提高了对遮挡车辆的检测精度。实验结果表明,在自制车辆检测数据集上,RC-YOLOv4算法相比于YOLOv4在平均精度均指标上提高了12.69%,同时检测速度也能满足实时性要求。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服