关键词:水下机械臂;蒙特卡洛法;运动空间;径向基函数神经网络;轨迹跟踪
摘 要:针对水下机械臂动力学模型不确定和未知外界干扰问题,采用基于HJI理论的径向基函数神经网络自适应控制算法对水下机械臂进行控制。首先,以水下六自由度机械臂为例,基于D-H法则对水下机械臂的运动学进行分析,通过仿真验证该方法的正确性;接着,基于蒙特卡洛法构建水下六自由度机械臂的运动空间云图,真实反映水下机械臂的运动空间;然后,以二自由度水下机械臂为例,设计基于HJI理论的RBF神经网络自适应控制器,利用神经网络的万能逼近原理逼近不确定干扰项,考虑到神经网络逼近存在误差,将逼近误差看作外界干扰项并通过HJI理论对逼近误差在线评价,评价系统对干扰项的抑制能力,并采用自适应算法在线估计网络权值,加快系统收敛;最后,通过仿真可知,该机械臂能较好地完成轨迹跟踪。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取