欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

融合极限学习机
作者:张文博;姬红兵; 作者单位:西安电子科技大学电子工程学院; 加工时间:2013-12-20 信息来源:电子与信息学报
关键词:模式识别;;极限学习机;;数据融合
摘 要:为提高极限学习机(Extreme Learning Machine,ELM)的分类性能,同时保留其训练速度快的优点,该文提出融合ELM的方法,详细分析了特征级融合及决策级融合两种实现方式。为实现决策级融合ELM,提出概率极限学习机(Probabilistic ELM,PELM),将传统ELM的数值型输出转化为概率型输出,使得不同特征的判决结果统一在固定范围。在此基础上,采用自适应权值的方式实现决策级融合,该方法充分考虑了分类器针对不同特征的判决准确率差异,无需先验知识及主观定义。实验证明,该文提出的融合ELM相较于传统的单一特征支持向量机(SVM)方法及ELM方法,具有更优的分类性能;在训练时...
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服