欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于矩阵乘积态的机械故障诊断方法研究
作者:黄文静; 李志农 加工时间:2023-09-28 信息来源:失效分析与预防
关键词:高阶张量;张量网络;矩阵乘积态;故障诊断
摘 要:在机械故障诊断中,针对传统神经网络处理高阶数据难度大、网络参数多、耗费大量计算资源的不足,提出了一种基于矩阵乘积态的张量网络故障诊断方法。通过输入高阶张量故障数据到矩阵乘积态故障诊断模型中,将高阶张量表示为多个低阶张量,从而简化数据结构和参数量。为了验证该方法的有效性,将其应用在齿轮的故障诊断中,并与传统的卷积神经网络故障诊断模型进行对比。同时,验证了键维度对模型准确率的影响。结果表明:所提模型的键维度会影响模型准确率,键维度为16的模型准确率高于键维度为8的模型准确率;该模型在减小数据复杂度的同时,还可以识别不同故障类型,准确率达到90%,比传统的卷积神经网络故障诊断模型性能更好。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服