欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于机器学习与时间序列组合模型的中国汽车市场预测
作者:朱周帆;郝鸿;张立文; 加工时间:2020-09-26 信息来源:统计与决策
关键词:汽车行业;预测;时间序列;机器学习
摘 要:文章构建了基于差分自回归移动平均(ARIMA)模型与支持向量机(SVM)、随机森林(RF)、极端梯度提升树(XGBoost)的三种组合模型,将其应用于国内汽车市场批零量预测。基于2009—2018年国内汽车市场乘用车批零量数据以及上汽集团数据库中相关指标数据,将组合模型的预测结果与改进后的三次指数平滑(HW)算法、ARIMA模型进行比较。结果显示:组合模型均能有效地改善建模结果,其中ARIMA与XGBoost的组合模型针对批发量与零售量的三个月内预测平均相对误差分别为3.53%与2.97%,对汽车企业具有参考价值。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服