欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于最优特征集和马氏距离KNN分类的机械故障分类方法研究
作者:孟亚辉; 加工时间:2017-06-14 信息来源:机械设计与制造
关键词:故障诊断;KNN算法;马氏距离;局部嵌入算法;主成分分析
摘 要:针对传统K近邻(K-Nearest Neighbor,KNN)算法在进行机械故障信号识别的过程中,无法挖掘特征参数之间关联性,提出一种基于最优特征集的马氏距离KNN分类方法,根据机械故障信号的非线性特点,使用小波分解获得时频域故障特征,通过局部嵌入算法(Locally Linear Embedding,LLE)来进行二次故障特征提取,从而获得多相关特征集并对其进行主成分分析得到最优特征集,最后通过数值仿真信号和齿轮故障数据的分析了方法的有效性。结果表明该方法能够有效挖掘特征参数之间关联性,增加不同故障之间区分度,从而提高故障识别精度。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服