-
节能电子制冷项目最终技术报告
Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE - ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customers requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development. The Precision Cooling Business Unit identified a few key projects to be the focus of the DOE grant. The first key project was to develop a cooling system for low voltage industrial drives used for power conversion and inversion. These systems utilize insulated-gate bipolar transistors (IGBTs) to complete switching at very high frequencies in a small amount of space. The use of IGBTs results in relatively high amounts of heat needing to be dissipated, or removed, from the electrical device efficiently. Water and air have been used for cooling these devices, but require the device to be de-rated at elevated ambient temperatures, because they do not have the thermal capacity of Parkers Vaporizable Dielectric Fluid (VDF) cooling system.
-
基于维修和陆军地面车辆的启用状态的传感器技术基线研究
This report documents the study of baseline sensor technology for enabling condition based maintenance plus in Army ground vehicles. The sensor study was driven from Failure Mode Effects Analysis (FMEA) conducted on four high cost driver components in Army ground vehicles by Tank Automotive Research, Development and Engineering Center (TARDEC). The four high cost driver components in Army ground vehicles as identified by TARDEC are engines, transmissions, batteries, and alternators. This report provides an assessment of current ground vehicle sensor systems and new baseline sensor technologies that may be used to support prognostic/diagnostic fault mode coverage including structural and component health monitoring for enabling condition based maintenance plus (CBM +) strategies to increase the operational availability of Army ground vehicles.
-
密尔沃基威斯康星州的停车设施中用LED高效节能灯替换照明灯具
The Forest County Potawatomi Community (FCPC or Tribe) owns a six-story parking facility adjacent to its Potawatomi Bingo Casino (the Casino) in Milwaukee, Wisconsin, as well as a valet parking facility under the Casino (collectively, the Parking Facility). The Parking Facility contained 205-watt metal halide-type lights that, for security reasons, operated 24 hours per day, 7 days per week. Starting on August 30, 2010, the Tribe replaced these fixtures with 1,760 state-of-the-art, energy efficient 55-Watt LED lights. This project resulted in an immediate average reduction in monthly peak demand of 238 kW over the fourth quarter of 2010. The average reduction in monthly peak demand from October 1 through December 31, 2010 translates into a forecast annual electrical energy reduction of approximately 1,995,000 kWh or 47.3of the pre-project demand. This project was technically effective, economically feasible, and beneficial to the public not only in terms of long term energy efficiency and associated emissions reductions, but also in the short-term jobs provided for the S.E. Wisconsin region. The project was implemented, from approval by U.S. Department of Energy (DOE) to completion, in less than 6 months. The project utilized off-the-shelf proven technologies that were fabricated locally and installed by local trade contractors.