-
用布朗棘轮设计自动化学纳米机械
In my work I have theoretically explored the biophysical mechanisms and energy landscapes that give rise to the ratcheting phenomena and devised devices that operate off these principles. I demonstrate two generations of devices that produce mechanical force/deformation in response to a user specified ligand. The first generation devices, fabricatied using a combination nanoscale lithographic processes and bioconjugation techniques, were used to provide evidence that the proposed ratcheting phenomena can be exploited in synthetic architectures. Second generation devices fabricated using self-assembled DNA/hapten motifs were constructed to gain a precise understanding of ratcheting dynamics and design constraints. In addition, the self-assembled devices enabled fabrication en masse, which I feel will alleviate future experimental hurdles in analysis and facilitate its adaptation to technologies. The product of these efforts is an architecture that has the potential to enable numerous technologies in biosensing and drug delivery. For example, the coupling of molecule-specific actuation to the release of drugs or signaling molecules from nanocapsules or porous materials could be transformative. Such architectures could provide possible avenues to pressing issues in biology and medicine: drugs could eventually be triggered to release in the presence of molecular signals indicative of diseased states, early disease detection could be achieved by examining the cell microenvironment then releasing imaging agents and generalized control could exerted over the free molecule signaling networks of cells.
-
生物医学应用中的CMOS磁传感器芯片
A compact and robust magnetic label detector for biomedical assays is implemented in 0.18-μm CMOS. No external magnet, reference sensor or baseline calibration is required. Detection relies on the magnetic relaxation signature of a microbead label for improved tolerance to environmental variations and relaxed dynamic range requirement.
-
一个CMOS磁传感器芯片为生物医学应用
A compact and robust magnetic label detector for biomedical assays is implemented in 0.18-μm CMOS. No external magnet, reference sensor or baseline calibration is required. Detection relies on the magnetic relaxation signature of a microbead label for improved tolerance to environmental variations and relaxed dynamic range requirement.